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carbenes, specifically allenylidene carbenes 4, with some ole­
fins. 

A priori, allenylidene carbenes 4 may be generated using 
base via a-elimination from an appropriately functionalized 
cumulene 5 or by "/-elimination from a properly functionalized 
enyne 6. These two modes of allenylidene carbene generation 
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are analogous to the generation3 of alkenylidene carbenes 3 
from allenyl and propargyl halides. Since to our knowledge 
cumulenyl halides 5 are unknown4 and not readily accessible, 
we chose triflate functionalized enynes5 6 as progenitors of 
carbene 4. Reaction of 5.0 mmol of alkynylvinyl triflates5 7a 
and 7b with a mixture of excess olefin in 1,2-dimethoxyethane 
at 0 0C maintained over an argon atmosphere and containing 
5.5 mmol of potassium fe/-/-butoxide proceeded as shown in 
Scheme I. Rapid loss of a proton and formation of anion 8 was 
indicated by reisolation of deuterium incorporated triflate 7b 
in deuterated media.6 Subsequent loss of the triflate ion results 
in carbene 4 which is a resonance hybrid of the neutral carbene 
4a and the dipolar form 4b. The contribution of the dipolar 

Extended Unsaturated Carbenes.1 

Generation and Reaction of Allenylidene Carbenes, 
(R)2C=C=C=C:, with Olefins 

Sir: 

Carbenes 1 are well established and highly useful members 
of the family of reactive intermediates.2 More recently un­
saturated carbenes, consisting of alkylidene 2 and alkenylidene 
3 carbenes, have been generated and shown to possess novel 

properties and chemistry.3 However, to date no extended un­
saturated carbenes beyond 3 have been reported. Such ex­
tended unsaturated carbenes would be of interest in their own 
right in addition to serving as a means of simple entry into 
cumulene chemistry. In this communication we report the 
generation and interaction of the next homologous unsaturated 

( R ) 2 C = C - C E C e 

lib 

form 4b is presumably minimized by both the relatively high 
energy of a vinyl cation7 in comparison with normal carbenium 
ions and the nonpolar nature of the reaction medium. Carbene 
4 is readily trapped by olefins resulting in adduct 9, whose 
subsequent fate is strongly dependent upon substituents in both 
the carbene and the olefin. 

Addition of the parent triflate 7a to tetramethylethylene 
(TME) results in a polymer most likely via oxygen initiated 
free radical polymerization of adduct 9.8 Using triflate 7b and 
TME, the monoadduct 10 is isolated as transparent plates. In 
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Table I. Spectral Data for Products 10, 11a, and lib 

compd 

10 

11a 

l ib 

mp, 0 C 

58-60 

102-104 dec 

114-116 dec 

mass spectra m/e 
(rel int) 

162(100), M + 

264 (94), M + 

165(100) 

320(100), M + 

U V , 

Xmax, nm (e) 

306 sh, (150) 
264(10800) 

236 sh, (3900) 
256(1750) 
202(11450) 

264(4000) 
245(4000) 
207(19200) 

IR,6 cm" ' (int) 

2065 (m) 

1900 (m) 
1710(w) 
860 (s) 
1955(m) 
1710(w) 

1H NMR, ' 8 ppm 
(no., mult) 

1.17 (12 H,s) 
1.80 (6 H, s) 

0.63 (2 H,m) 
1.19(8 H . b r m ) 
1.70(6 H,s) 
0.60(2 H, m) 
1.13 (8 H , b r m ) 
1.70 (6 H, s) 

13C N M R / 5 (ppm) 

163.5, 121.1, 116.2, 
11 1.7, 30.2(e), 28.3, 
24.6,21.1 

151.6, 129.7, 118.2, 
97.6,22.8,21.3,21.2 

195.3, 103.6, 100.2, 
40.1,21.7,21.4, 19.4, 
16.0 

0 Heptane. * 10% CCl4.
 c CCI4, internal standard Me4Si. d CDCl3, internal standard Me4Si, proton decoupled. e Impurity. 
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contrast, addition of either triflate 7a or 7b to cyclohexene as 
substrate results in formation of the respective dimers 11a and 
l ib via 9. Products 10,11a, and l ib were characterized and 
identified by spectral means as summarized in Table I. These 
spectral properties are completely consistent with the proposed 
structures. The medium-intensity 2065-cm-1 band and the 
264-nm Xmax of 10 are indicative of cumulenes.9 The intense 
low wavelength absorption (202- and 207-nm Xmax, respec­
tively) for both 11a and l ib is characteristic of known radi-
alenes as is the weak 1710-cm-' band.' ° The ' H NMR are also 
consistent with the proposed structures, although they do not 
differentiate between monomer and dimer. 

The most characteristic and useful spectral features of 10, 
11a, and l ib are exhibited by the mass spectra and 13C NMR 
data. For both 10 and lib, the respective molecular ions are 
the base peaks and, for 1 la, the molecular ion has an intensity 
of 94%. The 13C spectrum of 10 is in accord with those of 
analogous cumulenes11 and the spectra of dimers 11a and l ib 
are characteristic of similar alkylidenecyclopropanes12 and in 
harmony with expectations13 for such hydrocarbons. 

In summary, we have discovered a simple highly efficient 
means of allenylidene carbene 4 generation. These species 
readily add to olefins to give highly oxygen sensitive cumulenes 
and their dimers. At present, we are examining the possibility 
that allenylidene carbenes 4 are similar in nature to the related 
unsaturated carbenes 2 and 3 which are found to be electro-
philic and possess a singlet ground state.14 This question, as 
well as the chemistry of these novel unsaturated reactive in­
termediates, will be the subject of future reports. 

Acknowledgment. This research was supported by the Na­
tional Science Foundation (CHE78-03596). 
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Twofold Cation-OIefin Cyclization. 
Synthesis of syn-[3.2.1]2- and [2.2.2]2Geminane 

Sir: 

A large number of topologically fascinating molecules 
constructed of repeating alicyclic units are possible. Of these, 
only the homologous series comprised of adamantane,1 di-
amantane,2 triamantane,3 and the tetramantanes4 has received 
significant attention. This is a consequence not only of their 
relationship to the diamond lattice,5 but also because of their 
relative thermodynamic stability and consequent ready 
availability by Lewis acid catalyzed cationic rearrangement 
of many isomeric precursors.6 Since this synthetic approach 
is not extrapolatable to ring systems having different topo­
graphies, the absence of molecules from the latter group can 
be traced chiefly to an existing lack of viable synthetic meth­
odology.78 In this communication, we outline a new approach 
within this field of research which is founded on the concept 
of twofold cation-olefin cyclization, and is both efficient and 
simple. The present contribution describes the synthesis of 
novel hydrocarbons 1 and 2 which, for convenience, have been 

colloquially named 5>w-[3.2.1]2geminane and [2.2.2]2gemi-
nane, respectively.9,10 

The molecular frameworks of 1 and 2 are formally con­
structed of pairs of bicyclo[3.2.1]octane and bicyclo[2.2.2]-
octane ring systems, respectively, which have been fused 
symmetrically across a common C1-C2 bond. This innovation 
delivers a Cj symmetric structure for 1 and a still more sym­
metric (C2/1) molecule in the case of2. 

Reduction of known diester 3 " with lithium aluminum 
hydride in refluxing tetrahydrofuran afforded diol 4a (98%), 
mp 152-153 0C,12 which was subsequently converted to the 
bistetrahydropyranyloxy derivative 4b (100%). Treatment of 
4b with triphenylphosphine dibromide in dichloromethane at 
room temperature for 20 h led directly13 to dibromide 5a 
(67%): mp 133.5-134.5 0C; 1H NMR (5, CDCl3) 5.46 (nar­
row m, 4 H), 3.28 (t, J = 7 Hz, 4 H), 1.98 (pseudosinglet, 8 H), 
1.97 (t, J = 7 Hz, 4 H). For subsequent comparison purposes 
and to further substantiate that 5a had formed without rear­
rangement, the dibromide was reduced with sodium in liquid 

CH2COOCH3 CH2CH2OR CH2CH2X 

CD-CD -CD 
CH2COOCH3 CH2CH2OR 

4 a , R = H 
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